Description: Sorting Parity Encodings by Reusing Variables.- Community and LBD-based Clause Sharing Policy for Parallel SAT Solving.- Clause size reduction with all-UIP Learning.- Trail Saving on Backtrack.- Four Flavors of Entailment.- Designing New Phase Selection Heuristics.- On the Effect of Learned Clauses on Stochastic Local Search.- SAT Heritage: a community-driven effort for archiving, building and running more than thousand SAT solvers.- Distributed Cube and Conquer with Paracooba.- Reproducible E cient Parallel SAT Solving.- Improving Implementation of SAT Competitions 2017-2019 Winners.- On CDCL-based Proof Systems with the Ordered Decision Strategy.- Equivalence Between Systems Stronger Than Resolution.- Simplified and Improved Separations Between Regular and General Resolution by Lifting.- Mycielski graphs and PR proofs.- Towards a Better Understanding of (Partial Weighted) MaxSAT Proof Systems.- Towards a Complexity-theoretic Understanding of Restarts in SAT solvers.- On the Sparsity of XORs in Approximate Model Counting.- A Faster Algorithm for Propositional Model Counting Parameterized by Incidence Treewidth.- Abstract Cores in Implicit Hitting Set MaxSat Solving.- MaxSAT Resolution and SubCube Sums.- A Lower Bound on DNNF Encodings of Pseudo-Boolean Constraints.- On Weakening Strategies for PB Solvers.- Reasoning About Strong Inconsistency in ASP.- Taming High Treewidth with Abstraction, Nested Dynamic Programming, and Database Technology.- Reducing Bit-Vector Polynomials to SAT using Groebner Bases.- Speeding Up Quantified Bit-Vector SMT Solvers by Bit-Width Reductions and Extensions.- Strong (D)QBF Dependency Schemes via Tautology-free Resolution Paths.- Short Q-Resolution Proofs with Homomorphisms.- Multi-Linear Strategy Extraction for QBF Expansion Proofs via Local Soundness.- Positional Games and QBF: The Corrective Encoding.- Matrix Multiplication: Verifying Strong Uniquely Solvable Puzzles.- Satisfiability Solving Meets Evolutionary Optimisation in Designing Approximate Circuits.- SAT Solving with Fragmented Hamiltonian Path Constraints for Wire Arc Additive Manufacturing.- SAT-based Encodings for Optimal Decision Trees with Explicit Paths.- Incremental Encoding of Pseudo-Boolean Goal Functions based on Comparator Networks.
Price: 123 AUD
Location: Hillsdale, NSW
End Time: 2025-02-05T03:07:52.000Z
Shipping Cost: 31.03 AUD
Product Images
Item Specifics
Return shipping will be paid by: Buyer
Returns Accepted: Returns Accepted
Item must be returned within: 60 Days
Return policy details:
EAN: 9783030518240
UPC: 9783030518240
ISBN: 9783030518240
MPN: N/A
Book Title: Theory and Applications of Satisfiability Testing
Item Length: 23.4 cm
Number of Pages: 538 Pages
Language: English
Publication Name: Theory and Applications of Satisfiability Testing - SAT 2020: 23rd International Conference, Alghero, Italy, July 3-10, 2020, Proceedings
Publisher: Springer Nature Switzerland Ag
Publication Year: 2020
Subject: Computer Science
Item Height: 235 mm
Item Weight: 836 g
Type: Textbook
Author: Luca Pulina, Martina Seidl
Item Width: 155 mm
Format: Paperback