Description: Design of Linear Multivariable Feedback Control Systems by Joseph J. Bongiorno Jr., Kiheon Park This book contains a derivation of the subset of stabilizing controllers for analog and digital linear time-invariant multivariable feedback control systems that insure stable system errors and stable controller outputs for persistent deterministic reference inputs that are trackable and for persistent deterministic disturbance inputs that are rejectable. For this subset of stabilizing controllers, the Wiener-Hopf methodology is then employed to obtain the optimal controller for which a quadratic performance measure is minimized. This is done for the completely general standard configuration and methods that enable the trading off of optimality for an improved stability margin and/or reduced sensitivity to plant model uncertainty are described. New and novel results on the optimal design of decoupled (non-interacting) systems are also presented.The results are applied in two examples: the one- and three-degree-of-freedom configurations. These demonstrate that thestandard configuration is one encompassing all possible feedback configurations. Each chapter is completed by a group of worked examples, which reveal additional insights and extensions of the theory presented in the chapter. Three of the examples illustrate the application of the theory to two physical cases: the depth and pitch control of a submarine and the control of a Rosenbrock process. In the latter case, designs with and without decoupling are compared.This book provides researchers and graduate students working in feedback control with a valuable reference for Wiener–Hopf theory of multivariable design. Basic knowledge of linear systems and matrix theory is required. FORMAT Paperback LANGUAGE English CONDITION Brand New Back Cover This book contains a derivation of the subset of stabilizing controllers for analog and digital linear time-invariant multivariable feedback control systems that insure stable system errors and stable controller outputs for persistent deterministic reference inputs that are trackable and for persistent deterministic disturbance inputs that are rejectable. For this subset of stabilizing controllers, the Wiener-Hopf methodology is then employed to obtain the optimal controller for which a quadratic performance measure is minimized. This is done for the completely general standard configuration and methods that enable the trading off of optimality for an improved stability margin and/or reduced sensitivity to plant model uncertainty are described. New and novel results on the optimal design of decoupled (non-interacting) systems are also presented. The results are applied in two examples: the one- and three-degree-of-freedom configurations. These demonstrate that the standard configuration is one encompassing all possible feedback configurations. Each chapter is completed by a group of worked examples, which reveal additional insights and extensions of the theory presented in the chapter. Three of the examples illustrate the application of the theory to two physical cases: the depth and pitch control of a submarine and the control of a Rosenbrock process. In the latter case, designs with and without decoupling are compared. This book provides researchers and graduate students working in feedback control with a valuable reference for Wiener-Hopf theory of multivariable design. Basic knowledge of linear systems and matrix theory is required. Author Biography Joseph J. Bongiorno, Jr. received the bachelors, masters, and doctoral degrees in 1956, 1958, and 1960, respectively, from "Brooklyn Poly" now known as NYU Tandon School of Engineering. He began teaching at the Polytechnic in 1957 as an instructor and remained on the faculty until he retired in 1996. He has continued professional activities since then as Emeritus Professor.His teaching and research interests have been in control theory, and he has published papers on adaptive systems, stability of linear time-varying systems, dynamical observers, and frequency-domain analytical design techniques for multivariable systems. His research activities have been supported in part through grants from NASA, NSF, and ARO. Professor Bongiorno was a Consultant at Unisys (formerly Sperry) for nearly thirty years where he worked on problems related to inertial navigation of nuclear submarines. He was elected as a Fellow of the Institute of Electrical and Electronics Engineers (IEEE) in 1985 for contributions to the theory of control system design. He is also a co-recipient of the 1977 IEEE Control System Society Award for the Best Automatic Control Transactions paper. Kiheon Park received the B.S. and M.S. degrees in Electrical Engineering from Seoul National University, Korea, in 1978 and 1980, respectively, and the Ph.D. degree in System Engineering from Polytechnic University, NY, in 1987. From 1980 to 1983, he served in the Korean Navy as a full-time instructor at the Naval Academy. He was the recipient of a Korea Electric Association Scholarship from 1983 to 1986. From 1988 to 1990, he worked for the Electronic and Telecommunication Research Institute (ETRI), Daejeon, Korea, where he was involved in a factory automation project. Since March 1990, he has been with the School of Information and Communication Engineering at Sungkyunkwan University, Suwon, Korea, where he is currently a Professor. His research interests include optimal design of linear multivariable control systems, decoupling controller design, numerical calculation of Wiener-Hopf controllers and networked control systems. Table of Contents Chapter 1. Introduction.- Chapter 2. Stabilizing Controllers, Tracking, and Disturbance Rejection.- Chapter 3. H2 Design of Multivariable Control Systems.- Chapter 4. H2 Design of Multivariable Control Systems with Decoupling.- Chapter 5. Numerical Calculation of Wiener-Hopf Controllers. Review The book presents a valuable extensive reference on the design of linear time-invariant multivariable feedback control systems by using the Wiener-Hopf methodology discussing both the theory and practical applications. The book is intended for researchers, engineers and graduate students in automation engineering who wish to learn the theories, technologies, and applications of this subject." (Lubomír Bakule, zbMATH 1469.93001, 2021) Review Quote The book presents a valuable extensive reference on the design of linear time-invariant multivariable feedback control systems by using the Wiener-Hopf methodology discussing both the theory and practical applications. The book is intended for researchers, engineers and graduate students in automation engineering who wish to learn the theories, technologies, and applications of this subject." (Lubom Feature Presents a single analytical framework for major concerns in feedback system design Contains problems and complete solutions which provide additional insight Applies detailed results for 1- and 3-degree-of-freedom system configurations Details ISBN3030443582 Author Kiheon Park Short Title Design of Linear Multivariable Feedback Control Systems Pages 453 Language English Year 2021 ISBN-10 3030443582 ISBN-13 9783030443580 Format Paperback Publisher Springer Nature Switzerland AG Edition 1st Publication Date 2021-07-10 Imprint Springer Nature Switzerland AG Place of Publication Cham Country of Publication Switzerland UK Release Date 2021-07-10 Edition Description 1st ed. 2020 Subtitle The Wiener–Hopf Approach using Transforms and Spectral Factorization Alternative 9783030443559 DEWEY 629.832 Audience Professional & Vocational Illustrations 147 Illustrations, black and white; XI, 453 p. 147 illus. We've got this At The Nile, if you're looking for it, we've got it. With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love! TheNile_Item_ID:134206693;
Price: 352.29 AUD
Location: Melbourne
End Time: 2025-01-05T15:09:53.000Z
Shipping Cost: 13.21 AUD
Product Images
Item Specifics
Restocking fee: No
Return shipping will be paid by: Buyer
Returns Accepted: Returns Accepted
Item must be returned within: 30 Days
ISBN-13: 9783030443580
Book Title: Design of Linear Multivariable Feedback Control Systems
Number of Pages: 453 Pages
Language: English
Publication Name: Design of Linear Multivariable Feedback Control Systems: The Wiener-Hopf Approach using Transforms and Spectral Factorization
Publisher: Springer Nature Switzerland Ag
Publication Year: 2021
Subject: Computer Science
Item Height: 235 mm
Item Weight: 712 g
Type: Textbook
Author: Kiheon Park, Joseph J. Bongiorno Jr.
Subject Area: Mechanical Engineering
Item Width: 155 mm
Format: Paperback